Date of Issue: September 2018

Affected Publication: API Standard 526, Flanged Steel Pressure-relief Valves, September 2017

Errata 1

Table of Contents: Added the following line:

Spring-loaded Pressure-relief Valves "G" Orifice ^f (Effective Orifice Area = 0.503 in.²) 10 6

Table of Contents: Changed "Effective Area" to "Effective Orifice Area" in the following lines:

8	Spring-loaded Pressure-relief Valves "J" Orifice ^f (Effective Orifice Area = 1.287 in. ²)
9	Spring-loaded Pressure-relief Valves "K" Orifice ^f (Effective Orifice Area = 1.838 in. ²)
10	Spring-loaded Pressure-relief Valves "L" Orifice ^f (Effective Orifice Area = 2.853 in. ²)
11	Spring-loaded Pressure-relief Valves "M" Orifice f (Effective Orifice Area = 3.60 in. ²)
12	Spring-loaded Pressure-relief Valves "N" Orifice f (Effective Orifice Area = 4.34 in. ²)
13	Spring-loaded Pressure-relief Valves "P" Orifice f (Effective Orifice Area = 6.38 in. ²)
14	Spring-loaded Pressure-relief Valves "Q" Orifice f (Effective Orifice Area = 11.05 in. ²)
15	Spring-loaded Pressure-relief Valves "R" Orifice f (Effective Orifice Area = 16.00 in. ²)
16	Spring-loaded Pressure-relief Valves "T" Orifice ^f (Effective Orifice Area = 26.00 in. ²)

Table of Contents: Changed "Limits" to "Limits¹" in the following lines:

	Pressure-temperature Limits ¹ to be Used with Table 3 to Table 30 of This Standard	
B.2	Pressure-temperature Limits ¹ to be Used with Table 3 to Table 30 of This Standard	36
B.3	Pressure-temperature Limits ¹ to be Used with Table 3 to Table 30 of This Standard	37
B.4	Pressure-temperature Limits ¹ to be Used with Table 3 to Table 30 of This Standard	37
B.5	Pressure-temperature Limits ¹ to be Used with Table 3 to Table 30 of This Standard	38

				Temp	erature Ra	nge Inclu	sive 801 °F	to 1000 °	۴F				_
Chrome Molybdenum Steel	1D2 1D2 1 ¹ /2D2 1 ¹ /2D2 1 ¹ /2D3	300 600 900 1500 2500	150 150 300 300 300					510 1015 1525 2540 4230	215 430 650 1080 1800	290 290 (600) (600) 750	230 230 500 500 500	4 1/8 4 1/8 4 1/8 4 1/8 5 1/2	4 ¹ /2 4 ¹ /2 5 ¹ /2 5 ¹ /2 7
Temperature Range Inclusive - 450 °F to 1000 °F													
Austenitic Stainless Steel	1D2 1D2 ° 1D2 1 1/2D2 1 1/2D2 1 1/2D2 1 1/2D3	150 300 600 900 1500 2500	150 150 150 300 300 300	275 (275) 720 1440 2160 3600 (4000)	275 (275) 720 1440 2160 3600 6000	275 (275) 720 1440 2160 3800 8000	180 (275) 495 990 1485 2480 4130	80 (275) 420 845 1265 2110 3520	20 (275) 365 725 1090 1820 3030	275 275 275 (600) (600) 720	230 230 230 500 500 500	4 1/8 4 1/8 4 1/8 4 1/8 4 1/8 4 1/8 4 1/8 5 1/2	4 ¹ /2 4 ¹ /2 4 ¹ /2 4 ¹ /2 5 ¹ /2 5 ¹ /2 7
				Tempe	erature Ra	nge Inclus	ive –20 °F	to 300 °F	e e				
Alloy 20 ^e	1D2 1D2 ° 1D2 1D2 1D2 1 ¹ /2D2 1 ¹ /2D2 1 ¹ /2D3	150 300 300 600 900 1500 2500	150 150 150 300 300 300			230 (230) 600 1200 1800 3000 5000	180 (180) 465 930 1395 2330 3880			230 230 230 230 600 600 600	230 230 230 230 500 500 500	4 1/8 4 1/8 4 1/8 4 1/8 4 1/8 4 1/8 4 1/8 5 1/2	4 ¹ /2 4 ¹ /2 4 ¹ /2 4 ¹ /2 5 ¹ /2 5 ¹ /2 7

Table 3: The boxed sections below reflect changes made to the table:

Table 7: The boxed	section below reflects changes	made to the table:
1 4010 1. 1110 00/04	Section Scient reneote enangee	

				Tempera	ature Ran	ge Inclus	ive – 20 °	F to 900 위	F d				
Nickel/ Copper Alloy ^d	1 ¹ /2H3 1 ¹ /2H3 ^c 2H3 2H3 2H3 2H3	150 300 300 600 900	150 150 150 150 150			230 (230) 600 1200 1800	175 (230) 475 945 1420	80 (230) 460 915 1375	50 (230) 275 550 825	230 230 230 230 230 230	230 230 230 230 230 230	5 ¹ /8 5 ¹ /8 5 ¹ /8 6 ¹ /16 6 ¹ /16	4 ⁷ /8 4 ⁷ /8 4 ⁷ /8 6 ³ /8 6 ³ /8

Table 8: The title was changed to the following:

Table 8—Spring-loaded Pressure-relief Valves "J" Orifice ^f (Effective Orifice Area = 1.287 in.²)

Table 9: The title was changed to the following:

Table 9—Spring-loaded Pressure-relief Valves "K" Orifice ^f (Effective Orifice Area = 1.838 in.²)

Table 9: The boxed section below reflects changes made to the table:

				Tempe	rature Ra	nge Inclu	sive – 20	°F to 300	۰Fe				
Alloy 20 °	3K4 3K4° 3K4 3K4 3K6 3K6	150 300 300 600 900 1500	150 150 150 150 150 300			230 (230) 600 1200 1800 (2220)	180 (180) 465 930 1395 (2220)			230 230 230 230 230 230 600	150 150 150 200 200 200	6 ¹ /8 6 ¹ /8 6 ¹ /8 7 ¹ /4 7 ¹³ /16 7 ³ /4	6 ³ /8 6 ³ /8 6 ³ /8 7 ¹ /8 8 ¹ /2 8 ¹ /2

Table 10: The title was changed to the following:

Table 10—Spring-loaded Pressure-relief Valves "L" Orifice ^f (Effective Orifice Area = 2.853 in.²)

Table 10: The boxed section below reflects changes made to the table:

			Temper	ature Ra	nge Inclus	sive –450	°F to 100	0 °F				
Austenitic Stainless 4L6 Steel 4L6	150 300 300 600 900	150 150 150 150 150	275 (275) (535) (535) (700)	275 (275) 720 (1000) (1500)	275 (275) 720 (1000) (1500)	180 (275) 495 990 1485	80 (275) 420 845 1265	20 (275) 365 725 1090	275 275 275 275 275 275	100 100 170 170 170	6 ¹ /8 6 ¹ /8 7 ¹ /16 7 ¹ /16 7 ³ /4	6 1/2 6 1/2 7 1/8 8 8 ³ /4

Table 11: The title was changed to the following:

Table 11—Spring-loaded Pressure-relief Valves "M" Orifice ^f (Effective Orifice Area = 3.60 in.²)

Table 12: The title was changed to the following:

Table 12—Spring-loaded Pressure-relief Valves "N" Orifice ^f (Effective Orifice Area = 4.34 in.²) Table 12: The boxed section below reflects changes made to the table:

				Temper	ature Ra	nge Inclu	sive –20 °	F to 300	۰Fe				
Alloy 20 ^e	4N6 4N6 ^c 4N6 4N6 4N6 4N6	150 300 300 600 900	150 150 150 150 150			230 (230) 600 (1000) (1000)	180 (180) 465 930 (1000)			230 230 230 230 230 230	80 80 160 160 160	7 ³ /4 7 ³ /4 7 ³ /4 7 ³ /4 7 ³ /4 7 ³ /4	8 1/4 8 1/4 8 1/4 8 1/4 8 3/4 8 3/4

Table 13: The title was changed to the following:

```
Table 13—Spring-loaded Pressure-relief Valves "P" Orifice <sup>f</sup>
    (Effective Orifice Area = 6.38 \text{ in.}^2)
```

Table 14: The title was changed to the following:

Table 14—Spring-loaded Pressure-relief Valves "Q" Orifice ^f (Effective Orifice Area = 11.05 in.^2)

Table 15: The title was changed to the following:

Table 15—Spring-loaded Pressure-relief Valves "R" Orifice ^f (Effective Orifice Area = 16.00 in.^2)

I				Conventional and Balanced Bellows Valves							(psig)		1.)
B ody/ B onnet	Inlet by Orifice by Outlet	I N L E	O U T E T	N U T −450 °F −75 °F −20 °F L L to to 450 °F 800 °F 10	1000 °F	Flange Rating Limit ^a	Bellows Rating Limit ^a	I N L	O U T				
	outier	т		-76 °F	-21 °F	100 °F				100 °F	100 °F	E E T T	Ē
				Tempe	rature Ra	inge Inclu	sive – 20	•F to 900	۰Fd				
Nickel/ Copper Alloy ^d	6R8 6R8° 6R10 6R10	150 300 300 600	150 150 150 150			(100) (100) (230) (300)	(100) (100) (230) (300)	80 (100) (230) (300)	50 (100) (230) (300)	(60) (60) (100) (100)	60 60 100 100	9 ⁷ /18 9 ⁷ /18 9 ⁷ /18 9 ⁷ /18	9 ¹ /2 9 ¹ /2 10 ¹ /2 10 ¹ /2

Table 15: The boxed sections below reflects changes made to the table:

Table 16: The title was changed to the following:

Table 16—Spring-loaded Pressure-relief Valves "T" Orifice ^f (Effective Orifice Area = 26.00 in.^2)

Figure B.1: The title was changed to the following:

Figure B.1—Pressure-temperature Limits¹ to be Used with Table 3 to Table 30 of This Standard